Fabrication and Cell Responsive Behavior of Macroporous PLLA/Gelatin Composite Scaffold with Hierarchical Micro-Nano Pore Structure

نویسندگان

  • Kedong Song
  • Lili Ji
  • Jingying Zhang
  • Hai Wang
  • Zeren Jiao
  • Lim Mayasari
  • Xiaoyan Fu
  • Tianqing Liu
چکیده

Scaffolds providing a 3D environment which can effectively promote the adhesion, proliferation and differentiation of cells are crucial to tissue regeneration. In this study, the poly-l-lactic acid (PLLA) scaffold with hierarchical pore structural was fabricated via two-step thermally induced phase separation (TIPS). To mimic both physical architecture and chemical composite of natural bone extracellular matrix (ECM), gelatin fibers were introduced into the pores of PLLA scaffolds and formed 3D network structure via TIPS. Human adipose tissue-derived stem cells (ADSCs) were harvested and seeded into PLLA/gel hybrid scaffolds and cultured in vitro for biocompatibility assay. The surface morphology, porosity and compressive modulus of scaffolds were characterized by scanning electron microscopy (SEM), density analysis and compression test respectively. The results showed that hybrid scaffolds had high porosity (91.62%), a good compressive modulus (2.79 ± 0.20 MPa), nanometer fibers (diameter around 186.39~354.30 nm) and different grades of pore size from 7.41 ± 2.64 nm to 387.94 ± 102.48 nm. The scaffolds with mild hydrolysis by NaOH were modified by 1-ethyl-3-(3-dimethyl ami-nopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS). Gelatin was performed onto PLLA scaffold via TIPS aiming at enhancement cell-material interaction. In comparison with PLLA scaffold, the PLLA/gel scaffold had better biological performance and the mechanical properties because the gelatin fibers homogeneously distributed in each pore of PLLA scaffold and formed 3D network structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering

In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...

متن کامل

آماده‌سازی و بررسی آزمایشگاهی دو نوع داربست کامپوزیتی دارای ژلاتین برای کاربردهای مهندسی بافت‌های سخت

  Background and Aims: Until now, different types of scaffolds are presented for hard tissue engineering and the research continues to find the best scaffold. The aim of this study was to prepare scaffolds using two types of composite materials, ChitosanTriCalcium Phosphate (C/TCP) and ChitosanTriCalcium Phosphate/ Hydroxy apatite (C/TCP/ HA) and to add either 10% or 20% gelatin to compare thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015